New publication: A nomenclature and classification for the congenital myasthenic syndromes: preparing for FAIR data in the genomic era

Our new publication on developing a nomenclature for the congenital myasthenic syndromes is now available online at the Orphanet Journal of Rare Diseases website. In this paper we worked with CMS experts to classify the individual CMS types as a foundation for their use in computer-based diagnostic and decision-support systems in which it is important to differentiate individual entities, for example to be able to clearly point out which CMS types should receive which therapies.

Read the paper in full at the OJRD website here.

Abstract:

Background: Congenital myasthenic syndromes (CMS) are a heterogeneous group of inherited neuromuscular disorders sharing the common feature of fatigable weakness due to defective neuromuscular transmission. Despite rapidly increasing knowledge about the genetic origins, specific features and potential treatments for the known CMS entities, the lack of standardized classification at the most granular level has hindered the implementation of computer-based systems for knowledge capture and reuse. Where individual clinical or genetic entities do not exist in disease coding systems, they are often invisible in clinical records and inadequately annotated in information systems, and features that apply to one disease but not another cannot be adequately differentiated.

Results: We created a detailed classification of all CMS disease entities suitable for use in clinical and genetic databases and decision support systems. To avoid conflict with existing coding systems as well as with expert-defined group-level classifications, we developed a collaboration with the Orphanet nomenclature for rare diseases, creating a clinically understandable name for each entity and placing it within a logical hierarchy that paves the way towards computer-aided clinical systems and improved knowledgebases for CMS that can adequately differentiate between types and ascribe relevant expert knowledge to each.

Conclusions: We suggest that data science approaches can be used effectively in the clinical domain in a way that does not disrupt preexisting expert classification and that enhances the utility of existing coding systems. Our classification provides a comprehensive view of the individual CMS entities in a manner that supports differential diagnosis and understanding of the range and heterogeneity of the disease but that also enables robust computational coding and hierarchy for machine-readability. It can be extended as required in the light of future scientific advances, but already provides the starting point for the creation of FAIR (Findable, Accessible, Interoperable and Reusable) knowledgebases of data on the congenital myasthenic syndromes.

Image of publications and text reading "new paper!"

Read next...

award winners

Celebrating Lab Members’ Recent Research Awards

We are thrilled to celebrate Kelly Ho for receiving first place for her poster presentation at this year’s American Society for Pharmacology and Experimental Therapeutics...
New publication - RTD (2)

Meet The Lochmüller Lab’s Newest Members!

Our research team is growing! We are excited to introduce three new members who have recently joined the Lochmüller lab and several students who will...
McMillan smart study (1)

New Clinical Study Examines Safety and Efficacy of IV Onasemnogene Abeparvovec in Broad SMA Cohort

Pediatric neurologist Dr Hugh McMillan publishes clinical study examining the safety and efficacy of IV onasemnogene abeparvovec in the broadest cohort of SMA patients to...
Text reading: Solve-RD publication: Solve-RD flagship publication: Genomic reanalysis of a pan-European rare-disease resource yields new diagnoses. Photos of Dr Kiran Polavarapu, Dr Rachel Thompson, Dr Hanns Lochmüller.

Solve-RD flagship publication in Nature Medicine: Genomic reanalysis of a pan-European rare-disease resource yields new diagnoses

Patients and families with rare disorders often remain without a genetic diagnosis despite modern advances in diagnostic testing. Due to the rarity and global distribution...
New publication: Identifies Novel ATP2A2 Variant as Genetic Cause of Dominant Rhabdomyolysis . Author's photos on the right, diagram from paper underneath title.

New Lab Publication Identifies Novel ATP2A2 Variant as Genetic Cause of Dominant Rhabdomyolysis

Rhabdomyolysis is an acute failure of cellular homeostasis characterized by acute skeletal muscle damage triggered by trauma, infection, drugs, or strenuous exercise. Recurrent rhabdomyolysis is...
New lab publication on riboflavin transporter deficiency model

New Publication: Development of a riboflavin-responsive model of riboflavin transporter deficiency in zebrafish

Riboflavin transporter deficiency (RTD) is a rare genetic disorder in children, characterised by progressive sensorimotor and cranial neuronopathy caused by mutations in riboflavin transporter protein-encoding...