New Publication: MACF1 links Rapsyn to microtubule- and actin-binding proteins to maintain neuromuscular synapses

Determining the mechanism behind a disease causing gene is often very difficult, and yet it remains a key step in the translational pathway towards an effective therapy. That is why we were pleased to collaborate with the Burden Lab on this recent paper identifying the role of MACF1 at the neuromuscular junction (NMJ). Previous research in our group identified patients with congenital myasthenic syndromes with variants in MACF1, yet the pathomechanism remained elusive. Through a combination of biochemical screens, microscopy techniques, and protein assays, it was determined that MACF1 binds Rapsyn, which then binds acetycholine receptors to the microtubule network, hence stabilizing the mature NMJ. Collaborations such as these are vital for rare disease research.

Read the article here.

Abstract

Complex mechanisms are required to form neuromuscular synapses, direct their subsequent maturation, and maintain the synapse throughout life. Transcriptional and post-translational pathways play important roles in synaptic differentiation and direct the accumulation of the neurotransmitter receptors, acetylcholine receptors (AChRs), to the postsynaptic membrane, ensuring for reliable synaptic transmission. Rapsyn, an intracellular peripheral membrane protein that binds AChRs, is essential for synaptic differentiation, but how Rapsyn acts is poorly understood. We screened for proteins that coisolate with AChRs in a Rapsyn-dependent manner and show that microtubule actin cross linking factor 1 (MACF1), a scaffolding protein with binding sites for microtubules (MT) and actin, is concentrated at neuromuscular synapses, where it binds Rapsyn and serves as a synaptic organizer for MT-associated proteins, EB1 and MAP1b, and the actin-associated protein, Vinculin. MACF1 plays an important role in maintaining synaptic differentiation and efficient synaptic transmission in mice, and variants in MACF1 are associated with congenital myasthenia in humans.

Picture1

Read next...

Neuromuscular junction and animal models

Meet the lab’s two new members

Our lab is growing! We are excited to introduce two new members who have joined the Lochmüller lab this winter. Daniel O'Neil Daniel holds a...
spendiff-agrin-nmj

New publication: Modulation of the Acetylcholine Receptor Clustering Pathway Improves Neuromuscular Junction Structure and Muscle Strength in a Mouse Model of CMS

Our new paper, spearheaded by our lab manager Dr Spendiff, is now available online at Frontiers Molecular Neuroscience. This project is a product of an...
JND_logo

Invitation to submit to special issues of the Journal of Neuromuscular Diseases

The Journal of Neuromuscular Diseases has two exciting special issues that are open for submission of NMD research papers. One is a special issue dedicated...
Journal of Neuromuscular Diseases

Latest edition of the Journal of Neuromuscular Diseases now online – Sep 2020

A new issue of the Journal of Neuromuscular Diseases has recently been released. Read it below: Journal of Neuromuscular Diseases: Volume 7, issue 4 *Hanns...
team-386673_1920

Meet the lab’s three new members

Our lab is growing! We are excited to introduce three new members who have joined the Lochmüller lab this summer. Kiran Polavarapu Dr Kiran Polavarapu...
treatabolome-presentations

Treatabolome presentations now online

Within the European Solve-RD project, we participate in work to create a "treatabolome" - a database of evidence for treatments for rare disorders linked to...