New Publication: Salbutamol modifies the neuromuscular junction in a mouse model of ColQ myasthenic syndrome

While we know some drug treatments can help patients with disruption of the neuromuscular junction (NMJ) we do not always know why they work. Determining the mechanism or indeed mechanisms of action of a successful treatment may help us develop even more effective drugs though increasing specificity or reducing side effects. Here we show that one site of action of the β-adrenergic agonist salbutamol is the postsynaptic junction and the NMJ itself. Furthermore the improvements in muscle strength occurred in the absence of significant changes in muscle fibre size.

Article author Grace McMacken.

Read the full open access publication here.

Abstract

The β-adrenergic agonists salbutamol and ephedrine have proven to be effective as therapies for human disorders of the neuromuscular junction, in particular many subsets of congenital myasthenic syndromes. However, the mechanisms underlying this clinical benefit are unknown and improved understanding of the effect of adrenergic signalling on the neuromuscular junction is essential to facilitate the development of more targeted therapies. Here, we investigated the effect of salbutamol treatment on the NMJ in the ColQ deficient mouse, a model of end-plate acetylcholinesterase deficiency. ColQ-/- mice received 7 weeks of daily salbutamol injection, and the effect on muscle strength and neuromuscular junction morphology was analysed. We show that salbutamol leads to a gradual improvement in muscle strength in ColQ-/- mice. In addition, the neuromuscular junctions of salbutamol treated mice showed significant improvements in several postsynaptic morphological defects, including increased synaptic area, acetylcholine receptor area and density, and extent of postjunctional folds. These changes occurred without alterations in skeletal muscle fibre size or type. These findings suggest that β-adrenergic agonists lead to functional benefit in the ColQ-/- mouse and to long-term structural changes at the neuromuscular junction. These effects are primarily at the postsynaptic membrane and may lead to enhanced neuromuscular transmission.

Picture2

Read next...

award winners

Celebrating Lab Members’ Recent Research Awards

We are thrilled to celebrate Kelly Ho for receiving first place for her poster presentation at this year’s American Society for Pharmacology and Experimental Therapeutics...
New publication - RTD (2)

Meet The Lochmüller Lab’s Newest Members!

Our research team is growing! We are excited to introduce three new members who have recently joined the Lochmüller lab and several students who will...
McMillan smart study (1)

New Clinical Study Examines Safety and Efficacy of IV Onasemnogene Abeparvovec in Broad SMA Cohort

Pediatric neurologist Dr Hugh McMillan publishes clinical study examining the safety and efficacy of IV onasemnogene abeparvovec in the broadest cohort of SMA patients to...
Text reading: Solve-RD publication: Solve-RD flagship publication: Genomic reanalysis of a pan-European rare-disease resource yields new diagnoses. Photos of Dr Kiran Polavarapu, Dr Rachel Thompson, Dr Hanns Lochmüller.

Solve-RD flagship publication in Nature Medicine: Genomic reanalysis of a pan-European rare-disease resource yields new diagnoses

Patients and families with rare disorders often remain without a genetic diagnosis despite modern advances in diagnostic testing. Due to the rarity and global distribution...
New publication: Identifies Novel ATP2A2 Variant as Genetic Cause of Dominant Rhabdomyolysis . Author's photos on the right, diagram from paper underneath title.

New Lab Publication Identifies Novel ATP2A2 Variant as Genetic Cause of Dominant Rhabdomyolysis

Rhabdomyolysis is an acute failure of cellular homeostasis characterized by acute skeletal muscle damage triggered by trauma, infection, drugs, or strenuous exercise. Recurrent rhabdomyolysis is...
New lab publication on riboflavin transporter deficiency model

New Publication: Development of a riboflavin-responsive model of riboflavin transporter deficiency in zebrafish

Riboflavin transporter deficiency (RTD) is a rare genetic disorder in children, characterised by progressive sensorimotor and cranial neuronopathy caused by mutations in riboflavin transporter protein-encoding...