New publication: The clinical spectrum of the congenital myasthenic syndrome resulting from COL13A1 mutations

We were pleased to be part of this collaborative effort spearheaded by Pedro M. Rodrıguez Cruz and David Beeson to characterize the mutational and clinical spectrum of congenital myasthenic syndromes (CMS) associated with mutations in COL13A1. This study, which spanned multiple countries, provides a detailed description of the clinical features associated with this particular type of CMS, including how these symptoms change over time. This information not only helps with the recognition and treatment of the condition but also with providing information to patients regarding what to expect in the future.

Find the article on the Brain website here.

Abstract: Next generation sequencing techniques were recently used to show mutations in COL13A1 cause synaptic basal lamina-associated congenital myasthenic syndrome type 19. Animal studies showed COL13A1, a synaptic extracellular-matrix protein, is involved in the formation and maintenance of the neuromuscular synapse that appears independent of the Agrin-LRP4-MuSK-DOK7 acetylcholine receptor clustering pathway. Here, we report the phenotypic spectrum of 16 patients from 11 kinships harbouring homozygous or heteroallelic mutations in COL13A1. Clinical presentation was mostly at birth with hypotonia and breathing and feeding difficulties often requiring ventilation and artificial feeding. Respiratory crisis related to recurrent apnoeas, sometimes triggered by chest infections, were common early in life but resolved over time. The predominant pattern of muscle weakness included bilateral ptosis (non-fatigable in adulthood), myopathic facies and marked axial weakness, especially of neck flexion, while limb muscles were less involved. Other features included facial dysmorphism, skeletal abnormalities and mild learning difficulties. All patients tested had results consistent with abnormal neuromuscular transmission. Muscle biopsies were within normal limits or showed non-specific changes. Muscle MRI and serum creatine kinase levels were normal. In keeping with COL13A1 mutations affecting both synaptic structure and presynaptic function, treatment with 3,4-diaminopyridine and salbutamol resulted in motor and respiratory function improvement. In non-treated cases, disease severity and muscle strength improved gradually over time and several adults recovered normal muscle strength in the limbs. In summary, patients with COL13A1 mutations present mostly with severe early-onset myasthenic syndrome with feeding and breathing difficulties. Axial weakness is greater than limb weakness. Disease course improves gradually over time, which could be consistent with the less prominent role of COL13A1 once the neuromuscular junction is mature. This report emphasizes the role of collagens at the human muscle endplate and should facilitate the recognition of this disorder, which can benefit from pharmacological treatment.

COL13A1 continum

Read next...

https://lochmullerlab.org/files/cropped-LochmullerLab_web.jpg

Lochmüller Lab Welcomes New Students

Our lab is growing! We are excited to introduce two new students who have joined the Lochmüller Lab this fall.   Kelly Ho Kelly has...
JND8-4_announcement

Latest Issue of the Journal of Neuromuscular Diseases Now Available – July 2021

The Journal of Neuromuscular Diseases (JND) has announced the publication of a new issue of the journal!     Volume 8, Issue 4 of the JND contains a record number 30 items comprised...
meetClinicalTeam

Meet the Lochmüller Lab Clinical Team

Neuromuscular Clinic for adult patients at The Ottawa Hospital (TOH) Civic Campus As part of the team led by Dr. Jodi Warman Chardon, Hanns sees...
1by1treatabolome

Special issue of the Journal of Neuromuscular Diseases is devoted to the Treatabolome, designed to shorten diagnosis-to-treatment time for patients with rare diseases

In 2019, as part of the European Solve-RD project, Hanns Lochmüller, Gisèle Bonne and Rachel Thompson launched the Treatabolome, an initiative designed to extract details...
ProDGNE RGB-01

ProDGNE: Research Project to Develop an Innovative Therapeutic Compound to Treat GNE Myopathy

The Lochmüller Lab is proud to share its involvement in ProDGNE , a three-year transnational pre-clinical research project which aims to develop an innovative therapeutic...
Neuromuscular junction and animal models

Meet the lab’s two new members

Our lab is growing! We are excited to introduce two new members who have joined the Lochmüller lab this winter. Daniel O'Neil Daniel holds a...