A new arrival accompanied by a new publication

The Lochmüller lab is pleased to welcome Dr. Emily O’Connor to the group in Ottawa. Emily marked her arrival in the best possible way, with a new publication in the journal Cells, as part of their special issue entitled 150 Years of Motor Endplate: Molecules, Cells, and Relevance of a Model Synapse.

This new study, performed as part of Dr. O’Connor’s PhD work, describes screening of MYO9A-deficient zebrafish for improvements in phenotype after treatment with therapeutic compounds. Impaired function of MYO9A, has been associated with a sub-type of congenital myasthenic syndrome in patients. Zebrafish provide a useful system in which to study loss of neuromuscular junction (NMJ)- proteins due to the large numbers of embryos obtained, their transparency during development, easily accessible NMJs, and ability to perform high throughput drug screening

New lab member Dr. Emily O’Connor

A number of funding organizations contributed to this work including AFM-Téléthon, Kindness for Kids and the Canadian Institutes of Health Research

You can read the full open access article here and learn more about Dr O’Connor’s path to Ottawa here.


Publication Abstract

Congenital myasthenic syndromes (CMS) are a group of rare, inherited disorders characterised by impaired function of the neuromuscular junction (NMJ). This is due to defects in one of the many proteins associated with the NMJ. In three patients with CMS, missense mutations in a gene encoding an unconventional myosin protein, MYO9A, were identified as likely causing their disorder. Preliminary studies revealed a potential involvement of the RhoA/ROCK pathway and of a key NMJ protein, agrin, in the pathophysiology of MYO9A-depletion. In this study, a CRISPR/Cas9 approach was used to generate genetic mutants of MYO9A zebrafish orthologues, myo9aa/ab, to expand and refine the morphological analysis of the NMJ. Injection of NT1654, a synthetic agrin fragment compound, improved NMJ structure and zebrafish movement in the absence of Myo9aa/ab. In addition, treatment of zebrafish with fasudil, a ROCK inhibitor, also provided improvements to the morphology of NMJs in early development, as well as rescuing movement defects, but not to the same extent as NT1654 and not at later time points. Therefore, this study highlights a role for MYO9A at the NMJ, the first unconventional myosin motor protein associated with a neuromuscular disease, and provides a potential mechanism of action of MYO9A-pathophysiology.



Read next...


New pan-Canadian neuromuscular network unites doctors, researchers and patients for better research and care

Network lead Dr Hanns Lochmüller In case you missed it! Exciting news for Canadian NMD networking. We're excited to share news...

Good things come in 3s: New publications arising from EU funded collaborations on biomarker research and discovery

We are pleased to have been involved in this trio of papers examining biomarkers and genetic modifiers in Duchenne Muscular Dystrophy (DMD) and Becker Muscular...

Walk for Muscular Dystrophy Announce Dates and Times Across Canada

Muscular Dystrophy Canada (MDC) have announced the dates and times of their annual Walk for Muscular Dystrophy in more than 40 locations across Canada. Funds...

New Publication: COL4A1-related autosomal recessive encephalopathy in 2 Turkish children

We are happy to have been involved with this paper presenting the neurological phenotypes of 2 Turkish brothers with a novel mutation. Through whole-exome sequencing...

New Publication: Activities of daily living in myotonic dystrophy type 1

Our new paper on activities of daily living in patients with myotonic dystrophy type 1 (DM1) is now available online at Acta Neurologica Scandinavica. We...

New publication: De novo variant in SCN4A causes neonatal sodium channel myotonia with general muscle stiffness and respiratory failure

We were pleased to collaborate with colleagues  in Germany on this case report describing a de novo variant in SCN4A resulting in a phenotype of...